
A reactive platform
for real-time asset trading

Case Study

Our client is a marketplace for buying and selling many currencies as well
as ICO (Initial Coin Offering).

CLIENT PROFILE

PROJECT OVERVIEW

INDUSTRY
FINTECH

CHALLENGE
HANDLE UP TO 10000 REQUESTS PER SECOND IN A TRADING PLATFORM

PROJECT DURATION
2.5 YEARS, INCLUDING 10 MONTHS TO REWRITE THE TRADING SERVICE

TECHNOLOGIES
SCALA, AKKA PERSISTENCE, AKKA CLUSTER, AKKA STREAMS, CASSANDRA (DSE),
APACHE KAFKA, GATLING, PROMETHEUS, GRAYLOG, DC/OS

GOAL OF THE PROJECT
IMPLEMENTING CORE ENGINE FOR A DIGITAL ASSET EXCHANGE SYSTEM

BENEFITS

REACTIVE AND RELIABLE EXCHANGE SYSTEM WITH INCREASING VOLUME
EVENT STORE KEEPING ALL BUSINESS EVENTS, ENABLING REAL-TIME INSIGHTS
AND REPORTING
MODULARITY ALLOWING KEEPING THE EXCHANGE BUSINESS RUNNING WHILE
UPDATING OTHER COMPONENTS

Our customers' system was a very successful one, mainly because it has been

developed in a very short period of time, providing key features like limit offers,

market offers, extended history search, and other important capabilities. Exposed

as an elegant and robust web interface as well in a form of accessible REST API, the

platform quickly became the main source of transactions for traders all over the

world.

As the user base started to expand, the company has been frequently adding new

attractive markets. This, combined with solid marketing oriented on trustworthiness

and reliability, has driven the company to an extraordinary success.

However, it has become more and more expensive for the company to handle failures

manually. Additionally, a very high growth of users and markets started to show that

performance capabilities are limited. Because of very simple design, the system was

very well doing its job, but only to a point when it became necessary to scale it.

The main reason was that it was based only on the Akka Actor model with a few

actors and their mutable state backed by some blocking calls to the infrastructure

layer. It was impossible to put it in a multi-node environment without a heavy rework,

requiring deep knowledge about the internals.

Additionally, test coverage was very basic, which left no room for confidence in case

of very invasive updates. It was also clear that the system requires a strong division

between handling commands - offer submissions, and queries - requests for

secondary, derivative data (read model).

BACKGROUND

https://www.flexys.com/

Primary drivers for starting a new project was to resolve current scalability problems

in such a way, that adding new markets and handling increasing traffic becomes a

matter of spinning up new nodes in a cluster. Online trading systems attract both

regular users who put their offers using a web interface, as well as advanced traders,

who extensively use the direct API with bots. In case of exceptional events, markets

can quickly become flooded with a heavy load of requests, and the system is expected

to process them quickly and correctly. Therefore, absolutely top priority was to design

the core trading engine for data consistency.

Order books, and events resulting from offer matching needed to be the absolutely

reliable source of truth, consistent with our users’ wallets. Lags, lost messages,

downtimes and similar problems may quickly reduce the trustworthiness of a platform,

especially that such issues often cause immediate money losses.

The nature of trading platforms makes them notably attractive to hackers and

scammers, making security another crucial component. That’s why we’ve put so much

effort into testing on all possible levels.

However, some parts of the system have been identified as secondary, especially

reports and some of the views presented to users. This means that we could require

only eventual consistency in those parts of the system, and clearly separate them using

CQRS principles (Command/Query responsibility segregation).

After successful deployment, our team continued to add new features and new

microservices, benefitting from established architecture and communication patterns.

CHALLENGES

.....

Our engineers started with thorough study of the existing system. In order to build

a new one with the same API, we began to implement end-to-end tests, which have

been configured to run against both old and the new solution.

In parallel, we took all the performance and reliability requirements and proposed an

event-based architecture. Main exchange core was based on Akka Cluster and Akka

Persistence. With clustering, we could shard the business logic into markets, running

on separate nodes and allowing great scalability.

With clear segregation between commands and queries, we were able to write

separate services for processing the core business logic of offer matching, and the

definitions of so-called projections: pipelines for event processing and building the

read model in various storage types.

Many types of projections were initially left to be just the same as in the original

system, just now we were writing to these databases using projectors. Such separate

projector services are Kafka consumers, so we can easily manage parallelisation and

separation which particular projections run on which nodes. This way we separated

expensive and crucial projections (like transfers, or building the main view of

orderbooks) from secondary ones - like history search views.

Another set of projector nodes have been configured separately only to handle

incoming queries. This way redeployments of projections or main engine didn’t affect

requests for data.

Our DevOps engineers prepared a solid build pipeline with infrastructure defined

as a code for all the environments like development, staging, and production. In the

meantime, we connected Prometheus and Grafana for monitoring, as well as Graylog

for log aggregation. Then we designed detailed performance tests using Gatling, to

see how our setup could handle 10000 requests per second.

SOLUTION

.....

When the initial version was ready, we could collect metrics from Grafana and Gatling

itself to identify potential bottlenecks and see what are the platform capabilities. It

turned out that we could easily handle thousands of messages with a few nodes, and

adding more nodes to the Akka Cluster would increase the throughput without

problems. Some existing legacy services in the customer's system turned out to be

slowing down the processing to hundreds of messages per second, but this was

a satisfying result for a start. We could move on to rewrite these services in later

phases.

Finally, we defined a DSL which allowed us to write many acceptance tests for offer

matching scenarios. With a large set of such tests passing for both old and new

platforms, we were getting closer to the release. Last step required QA engineers to

test all the remaining scenarios manually, and to do some safe tests on production,

at least for the read-only part.After successful release the new platform turned out

to be robust and correct, and we could start developing new features, like handling

of Stop Offers.

This new module was capable of reading events from the exchange core and

submitting commands to using Kafka. Thanks to an advanced monitoring and

alerting setup, we could also offer an attractive support plan for our customer.

With such a plan, they could be sure that any failures are quickly addressed by the

on call team. The team was, at the other hand, very confident that many kinds of

failures would be automatically recovered due to reactive mechanisms like restarts,

at-least-once-delivery guarantees, replication, and isolation.

SOLUTION

.....

Projector
service

Projector
service

Publish stop
events /
read
exchange
events

queries

SOLUTION

Read models

Projector
service

Exchange service

Exchange service

Exchange service

Stop loss
service

stop offers

Legacy
services

trading offers

events

commands

Event Store

events

Query services

Query services

Query services

events

.....

The exchange platform not only continued to generate growing revenue to our

customer, but gave them strong confidence that the system is ready for unexpected

events and that it can process large volumes.

Also, updating the platform with fixes and new features has become a safe, frequent

action affecting only minimal scope, and keeping the rest up and running, so that

trading could continue even during redeployments.

We started to design new services, which have been implemented and deployed with

equal success. Our engineers also worked on rewriting some of the legacy services in

order to make them more reactive and match the architectural idea.

The solution gives our customer a possibility to quickly react and as many new

markets as they want, without worrying about technical capabilities.

New API users can join in great numbers, including large companies who connect to

the API with high-frequency automatic trading algorithms.

RESULTS

GOT AN IDEA?
WE'LL MAKE IT HAPPEN

contact@softwaremill.com
www.softwaremill.com

We are SoftwareMill, a Poland(EU)-based consulting & custom software development company, delivering services
remotely, worldwide for 10 years. Being experts in Scala (Akka, Play, Spark), Java, Kotlin we specialize in blockchain,

distributed, big data systems, machine learning, IoT, and data analytics.

We believe that focus on quality, self-improvement and a true engineering approach can result in systems that do
their job, bring value to clients, help them scale and grow.

https://softwaremill.com/contact/
https://softwaremill.com/contact/
https://softwaremill.com/

