
CASE STUDY:
Energy meets Big Data

CASE STUDY

Energy meets Big Data

The Challenge

IntelliSMS is present on the SMS market for a long time, since the year 2000,

and through the years evolved to offer a wide range of SMS-related services:

Background

Our customer - a company specializing in the analysis of energy usage data -

was encountering performance and data integrity issues with their data

processing platform. When we joined the project, the processing capacity was

becoming insufficient and scaling the platform was not an option.

Since the client expected significantly more data within a short period, they

asked SoftwareMill to build a new system with scalability in mind. Apart from

pulling data from external systems, the new solution needed to be capable of

consuming data pushed from a number of external devices, with an expected

throughput of 2000 messages per second.

Performance issues

There were two areas where the performance needed to be improved.

The first one was an external API from which the energy consumption data

was fetched. The API endpoint was rather a slow one, with response times

around tens of seconds. Combined with a single-threaded data fetching

process, it resulted in a situation where it was impossible to fetch the

consumptions from a single day within 24 hours, which led to an

accumulating delay.

The other area was the data cleaning part, whose implementation was far

from optimal. Although the algorithms themselves were fairly simple, there

was a significant number of unnecessary SQL queries that slowed down the

entire process. Moreover, the legacy implementation was in PHP, which

resulted in single-threaded execution, although most of the calculations

could well have been executed in parallel.

© 2017 SoftwareMill
hello@softwaremill.com

CASE STUDY:
Energy meets Big Data

Our solution

The general architecture of the solution we created is presented in Figure 1.

Following are more detailed descriptions of some specific areas of the

system.

Figure 1. Architecture overview

Performance and data integrity

In order to achieve maximum efficiency when fetching data from the external

API, we introduced a streaming approach, which let us parallelize the fetching

process in a number of places. Firstly, we were able to make a controlled

number of concurrent connections to the external server. Secondly, we could

perform some intermediate computations and prepare batches of data to be

inserted into the database in an asynchronous manner.

By using the Akka Streams library to implement the processing pipeline, we

could focus on developing the actual processing logic in the form of small,

independent building blocks. Meanwhile, the responsibility for planning and

optimizing the actual execution of the processing graph was handled by Akka

Streams automatically. To ensure that the imported data is both complete

and not duplicated, we implemented a number of integrity checks to preserve

uniqueness and re-fetch any missing records.

© 2017 SoftwareMill

hello@softwaremill.com

CASE STUDY:
Energy meets Big Data

Scalability

Having in mind the constantly growing volume of data and the high

throughput expected for the pushed data, we decided to choose Apache

Cassandra as the database for two main reasons:

● high performance of inserts

● out-of-the-box scalability on commodity hardware

Post-processing large datasets

The collected data was exposed through a REST API so that the client could

access it from their own systems. While exposing the raw data was a no-

brainer, it was a challenge to efficiently compute some less trivial

aggregations so that the could be exposed as well. For such resource-heavy

computations we have successfully used Apache Spark - a platform that

abstracts away the distributed processing of large datasets.

Event-based metrics

The client wanted to be able to track some areas of the data import process

and use the tracking data to compute a number of metrics. Since we didn’t

want the tracking mechanism to affect the performance of the critical data

processing components, we chose an event-based approach with the data

processor only asynchronously emitting events (at almost no cost) and a

separate infrastructure handling those events and computing the metrics.

The monitoring infrastructure was build using Riemann as the event

aggregation layer and InfluxDB as the time series datastore. The metrics

stored in the datastore could then be easily visualized in Grafana, which

seamlessly connects to InfluxDB.

© 2017 SoftwareMill
hello@softwaremill.com

CASE STUDY:
Energy meets Big Data

Summary

By introducing Akka Streams to implement a streaming-based approach to

fetching data from external systems, and using Cassandra as a high-

performant and easily-scalable database, we were able to rebuild our client’s

data processing platform to perform in a timely manner and be ready to

handle the constantly growing volumes of data.

© 2017 SoftwareMill
hello@softwaremill.com

Contact

We take your mind off software development. Just drop us a line:

hello@softwaremill.com - we’ll get back to you!

SoftwareMill delivers custom software solutions: web applications, back­end systems and enterprise solutions.
We specialize in Java, Scala and Cloud technologies with particular interest in JBoss, Amazon Web Services
and Big Data projects. We develop software solutions with care and strong belief in the agile approach.

